
Lutsig: A Verified Verilog Compiler
for Verified Circuit Development

Andreas Lööw
Chalmers University of Technology

Gothenburg, Sweden

Abstract
We report on a new verified Verilog compiler called Lutsig.
Lutsig currently targets (a class of) FPGAs and is capable of
producing technology mapped netlists for FPGAs. We have
connected Lutsig to existing Verilog development tools, and
in this paper we show how Lutsig, as a consequence of this
connection, fits into a hardware development methodology
for verified circuits in the HOL4 theorem prover. One im-
portant step in the methodology is transporting properties
proved at the behavioral Verilog level down to technology
mapped netlists, and Lutsig is the component in the method-
ology that enables such transportation.

CCSConcepts: •Hardware→Hardware description lan-
guages and compilation;Logic synthesis;Theoremprov-
ing and SAT solving; Methodologies for EDA.

Keywords: hardware synthesis, compiler verification, hard-
ware verification
ACM Reference Format:
Andreas Lööw. 2021. Lutsig: A Verified Verilog Compiler for Verified
Circuit Development. In Proceedings of the 10th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP ’21),
January 18–19, 2021, Virtual, Denmark. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3437992.3439916

1 Introduction
We envision a future where hardware development can be
carried out entirely inside an interactive theorem prover (ITP).
As a step towards this future, we present a methodology for
the development of correct hardware artifacts and provide
the tools needed for the methodology.
First, to motivate the methodology, we take a short de-

tour into the software world. In today’s formal methods

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8299-1/21/01. . . $15.00
https://doi.org/10.1145/3437992.3439916

ecosystem for software development, we find tools for the
following development methodology: (i) prove a correctness
theorem about your program at the source level, (ii) use a
verified compiler to transform your program to machine
code, and, lastly, (iii) transport the source-level program cor-
rectness theorem down to the generated machine code by
composing the source-level program correctness theorem
with the compiler correctness theorem. When carried out
inside an ITP, the development methodology is capable of
producing artifacts with remarkably small trusted computing
bases (TCBs) [20]. For example, the verified CakeML com-
piler [35] and its accompanying formal methods tools hosts
such a development methodology inside the ITP HOL4 [32].
To put trust in the correctness of software produced inside an
ITP according to the methodology, users need only to trust
the correctness specification used in the program correct-
ness theorem, that the formalization of the target machine’s
instruction set architecture (ISA) used to model the behavior
of the machine code accurately captures the actual behavior
of the target machine, and the ITP itself.
Returning back to the hardware world, we believe the

above development methodology is equally useful when ap-
plied to hardware as when applied to software.When applied
to the hardware, the methodology enables the production
of hardware artifacts with the same TCBs as the software
TCBs outlined above except that we will have to trust a for-
malization of a model of hardware instead of a formalization
of a target machine’s ISA (i.e., a model of a target machine).
In the hardware world, however, no toolchain for carrying
out hardware development entirely inside an ITP exist to-
day. Instead, hardware development must be carried out by
connecting together multiple (unverified) tools, resulting in
a much larger TCB: Also individual tools and intermediate
formalisms and languages need to be trusted.
In this paper, we describe a new compiler, called Lutsig,

for the hardware description language (HDL) Verilog that we
have verified using the ITP HOL4 [32]. The compiler targets
technology mapped netlists. As a result, for the first time, the
above development methodology can be carried out in the
hardware world down to technology mapped netlists inside
an ITP. This improves the state-of-the-art (Sec. 8), but does
not (yet) allow us to carry out all of hardware development
inside an ITP as compilation steps following technology
mapping still have to be carried out outside HOL4 (Sec. 3).
Specifically, we make the following contributions:

https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1145/3437992.3439916

CPP ’21, January 18–19, 2021, Virtual, Denmark Andreas Lööw

• we develop and describe a verified compiler from a
subset of Verilog, by far the most widely used HDL
today [11], down to netlists, and a hybrid verified
translation-validation-based technology mapper for (a
class of) FPGAs, together forming our compiler Lutsig;
• we connect the compiler to existing development tools
for proving Verilog circuits correct [23]; and
• we show that the compiler and the connected Verilog
development tools can host the above small TCB devel-
opment methodology – in particular, we show how to
map correctness theorems proved at the Verilog level
down to the technology mapped netlist level.

All source code and proofs are available at https://github.
com/CakeML/hardware.

2 Why Existing Approaches to Hardware
Development Are Insufficient

This section further motivates moving hardware develop-
ment inside an ITP by further outlining problems with to-
day’s non-ITP methodologies. We again focus on transport-
ing theorems from the source level down to some target level.

One problem for non-ITP development methodologies we
highlight is the problem of individual correctness of the com-
pilation tools used. But the main problem for non-ITP devel-
opment methodologies is that they do not provide a way to
avoid intermediate compilation steps ending up in the TCB.

Individual tool correctness. Of course, it is important
that each tool involved in the compilation is correct. Today’s
unverified tools, however, contain bugs [16]. This problem
can to some extent be addressed in non-ITP methodologies
by relying on translation validation [30] (or as it is known in
the hardware world, logical equivalence checking or formal
equivalence checking). A translation validation tool for a
compilation tool takes the input given to the compilation
tool and the output produced by the compilation tool and
finds an equivalence proof between the input and the output.
This means that we no longer need to trust the compilation
tool to be correct. Instead, we only need to trust the transla-
tion validation tool (or its associated proof checker, if such
a checker is available). However, it is not enough that each
individual tool functions correctly when we want to trans-
port a source-level correctness theorem down to our target
level; the tools and the correctness theorem must also “fit
together”, and this problem is not addressed by translation
validation. We consider this problem next.

Intermediate compilation steps in the TCB. When trans-
porting correctness theorems from the source level down to
our target level, we will pass by many different representa-
tions and tools on our way. For the transportation to succeed,
these tools and our correctness theorem must fit together
– they must be composable. In an ITP setting, if the trans-
portation succeeds, then, when all steps have been composed

together, intermediate steps will have been removed out of
the TCB. This is not the case in a non-ITP setting.
One composition problem we will face is that the prover

we used to prove the source-level correctness theorem we
want to transport and the compilation tools in use might
(subtly) differ in how they interpret the HDL we have imple-
mented our circuit in. If we do not check our compositions
mechanically, which is not done in today’s methodologies,
bugs stemming from composition problems might go unno-
ticed. This problem is particularly important in hardware
development, because today’s two most used HDLs, Verilog
and VHDL, are infamous for their gotchas and idiosyncrasies
(for Verilog, see e.g. Sutherland and Mills [34]). To address
this, instead of checking compositions mechanically, numer-
ous attempts at designing new HDLs have resulted in a small
ecosystem of HDLs meant to replace or supplement Ver-
ilog and VHDL, such as e.g. Lava [6], Bluespec [27], and
Chisel [5] (see also Gammie [12]). Using a well-designed lan-
guage instead of Verilog and VHDL shrinks the TCB, but the
replacement language still contributes to the TCB. In other
words, replacing Verilog and VHDL improves the situation
but does not resolve the situation entirely. Moving hardware
development inside an ITP, on the other hand, completely
eliminates the language used to express the source-level cir-
cuit from the TCB. As a result, from a TCB perspective, the
choice of language does not matter.
A similar composition problem occurs when composing

tools together into a compilation chain down to the abstrac-
tion level we are targeting. The tools must communicate with
each other, and if the languages used for communication are
interpreted differently by the tools there is a risk of bugs
being introduced in the compilation process. One can (also
here) introduce new, supposedly well-designed, languages
for communication between tools to address this problem.
New such languages include LLHD [31] and FIRRTL [19]. In-
deed, for communication between tools, compared to Verilog
and VHDL, (e.g.) “LLHD’s simplicity offers a much smaller
‘surface for implementation errors’” [31]. In contrast, moving
hardware development inside an ITP renders communica-
tion language choice unimportant from a TCB perspective –
the move eliminates the “surface for implementation errors”
completely. Again, improving the languages involved can
shrink the TCB, but still leaves the languages in the TCB
rather than removing them from the TCB.

3 Compiler Overview
This section gives an overview of Lutsig’s compilation passes
and shows how Lutsig fits into the ITP development method-
ology described in the introduction of this paper.

Fig. 1 shows a compilation chain from HOL circuits down
to FPGA bitstreams we have made Lutsig part of. In this
chain, the compilation from HOL circuits (A) to Verilog cir-
cuits (B) is handled by the proof-producing Verilog translator

https://github.com/CakeML/hardware
https://github.com/CakeML/hardware

Lutsig: A Verified Verilog Compiler for Verified Circuit Development CPP ’21, January 18–19, 2021, Virtual, Denmark

(A) HOL circuit

(B) Verilog circuit

(C) Type annotated Verilog circuit

(D) Pre-processed Verilog circuit

(E) Netlist

(F) Netlist

(G) Deterministic netlist

(H) Partly technology mapped netlist

(I) Fully technology mapped netlist

(J) Fully technology mapped Verilog netlist

(K) FPGA bitstream

Proof-producing compilation

Type checking and type annotation (Sec. 5.1)

Pre-processing of case-statements
and array lookups (Sec. 5.2)

Netlist compilation (Sec. 5.3)

Remove registers never read

Determinize netlist (Sec. 5.4)

Technology mapping of high-level cells
and blasting (Sec. 6.1)

Translation-validation-based
technology mapping (Sec. 6.3)

Unverified Verilog pretty-printing

Unverified placement and routing

Figure 1. An overview of Lutsig’s compilation passes and
illustration of how Lutsig fits into circuit development.

described in Lööw and Myreen [23]. We chose to use this
translator because it was simple to connect to Lutsig because
Lutsig’s Verilog semantics is based on the Verilog semantics
used by the translator. However, we should keep in mind that
this connection just illustrates one particular use of Lutsig.
Lutsig is not limited to using this particular translator as its
front-end; combining Lutsig with any front-end tool capable
of somehow providing HOL4 correctness proofs for circuits
implemented in terms of Lutsig’s Verilog semantics gives us
a toolchain for hosting the ITP development methodology
we are interested in here.1

Continuing down the compilation chain, regardless of
front-end used, Lutsig handles the compilation of Verilog
circuits (B) down to technology mapped netlists (I). All steps
1Of course, Lutsig can also be used in combination with a Verilog front-
end tool not capable of providing HOL4 proofs – but the combination
of such a tool with Lutsig does not give us a solution to the problem of
removing intermediate compilation steps out of the TCB as outlined in
Sec. 2. Nevertheless, if we simply want to use Lutsig as a trustworthy
Verilog compiler without transporting proofs, then a simple non-verified
Verilog parser would suffice as a front-end.

between (B) and (I) are verified except the last step (i.e., (H)
to (I)), which is instead based on translation validation. The
compilation steps below the dotted line in Fig. 1 are carried
out outside the formal development. That is, we currently
rely on (unverified) external Verilog-based tools to handle
the last stages of compilation; in particular placement and
routing, but also (among others) clocking and details such as
encoding the compilation result as an FPGA bitstream. Mov-
ing those stages of compilation into HOL4 is left as future
work since we expect an approach similar to the translation
validation approach taken in the second part of Lutsig’s tech-
nology mapper (i.e., the step from (H) to (I)) to be applicable
for those compilation steps as well – we have, however, not
investigated this in detail yet. In terms of TCB, this means
that we are not yet fully independent of Verilog.

In Sec. 7, to show how the suggested compilation chain of
Fig. 1 works in practice, we present a case study following
the setup. But first, we describe the different components of
Lutsig in the coming sections.

4 Source Language and Target Language
As a first step towards describing the compiler, we describe
the source language and target language of the compiler.
The source language of Lutsig is a subset of Verilog. The

Verilog semantics used is based on earlier work on Verilog
semantics by Lööw and Myreen [23]. In the earlier work, it
was important that the Verilog semantics soundly captured
the Verilog standard [4]. For this paper, sound capture of
the standard is not important for circuit correctness results,
as the Verilog semantics is not part of the TCB of circuits
developed according to the development methodology we
follow. However, faithfulness to the standard is important in
order to be able to call the compiler a Verilog compiler.

The target language of Lutsig is a simple custom language
for netlists consisting of lookup tables (LUTs), cells for arith-
metic hardware found in the class of FPGAs we target, and
registers. The same netlist language is used for representing
intermediate circuits during compilation; intermediate cir-
cuits are expressed in terms of high-level cells that are later
mapped to the final target cell set.

4.1 Source Language: Verilog
Lutsig supports the subset of Verilog described in Fig. 2.
The syntax is animated by a functional big-step operational
semantics [28] designed with the aim of being a sound simpli-
fication of the simulation semantics provided by the Verilog
standard [4]. The semantics is based on previous work [23],
which should be consulted for details on the semantics.2 The
syntax and semantics is, since this paper, accompanied by a
no-frills type system.

2The same scope limitations as described in Lööw and Myreen [23] still
hold, in particular we do not consider Verilog’s implicit resizing of arrays
(which would be simple but uninteresting to support).

CPP ’21, January 18–19, 2021, Virtual, Denmark Andreas Lööw

c ::= b | [b] for Boolean b
t ::= logic | logic[n] for n ∈ N
op ::= && | || | == | +
e ::= c literal constant

| v variable
| v[e] array indexing
| ¬e unary not
| e op e binary operator

s ::= s ; s sequencing
| if e then s else s if-statement
| case e [e : s] s? endcase case-statement
| e = e blocking assignment
| e <= e non-blocking assignment
| e = X blocking X assignment
| e <= X non-blocking X assignment

d ::= t v = c
| t v = X

p ::= always_ff @(posedge clk) s
m ::= module [(v, t)] [d] [p]

Figure 2. Verilog values c , Verilog types t , expressions e ,
statements s , variable declarations d , processes p, and mod-
ulesm. The notation [x] denotes a list of xs, and x? denotes
an optional x .

In Lutsig’s Verilog semantics, the top-level construct is
a module module [(v, t)] [d] [p] consisting of type declara-
tions for inputs [(v, t)], variable declarations [d], and pro-
cesses [p]. The semantics of a module is given by a function
run fext fbits (Module exttys decls ps) n expressed in a
sum monad where errors are represented by Inl and suc-
cess by Inr. On success, run returns an environment with
the variables in decls . In the semantics, non-determinism is
modeled using the two functions fext and fbits and quan-
tification in theorems where the semantics is used, see Lut-
sig’s correctness theorem in Sec. 6.2 for an example. The
function fext : N → string → error + value represents the
world outside the circuit and maps clock cycles to states of
the external world. The variables read from snapshots of
the external world must be typed according to exttys . The
function fbits : N → bool represents an infinite stream of
non-deterministic bits and is used to give semantics to non-
deterministic constructs in the language (described below).
Executing the semantics consists of initializing all variables
according to decls and then running the processes ps for n
clock cycles. The Verilog standard allows for processes to
be interleaved non-deterministically. In the compiler, we did
not find a use for the additional optimization freedom such
non-deterministic interleavings offer, and consequently, a
clock cycle in the semantics consist of executing processes
sequentially in declaration order.

Verilog processes consist of statements s and expressions
e , and they in turn mostly consist of the usual imperative-
language constructs. We highlight two constructs that stand

out among the crowd of otherwise usual constructs. The first
construct we highlight is X assignments. In Lutsig’s Verilog
semantics, an assignment v = X overwrites the variable v
with non-deterministic bits from fbits . This semantics de-
viates from the standard, and the deviation is motivated in
Sec. 4.1.2. The second construct we highlight is non-blocking
assignments, written <=, which are used for communication
between processes. Blocking assignments, written =, have
the usual imperative-language semantics. To be able to ex-
press the semantics of non-blocking assignment, Lutsig’s
Verilog semantics has two separate environments Γ and ∆
that are used to keep track of variables’ state during execu-
tion. Variable reads and blocking assignments only interact
with Γ. Non-blocking assignments, on the other hand, do not
update Γ directly, but instead update ∆, which is merged into
Γ at the end of each clock cycle, such that the updates in ∆
become available in Γ in the next clock cycle. Informally, non-
blocking writes do not interfere with the execution of the
current clock cycle and will instead only be made available
to all processes from the next clock cycle.

4.1.1 Simulation and Synthesis Semantics? One of Ver-
ilog’s (many) idiosyncrasies that must be taken into con-
sideration when developing a compiler is that Verilog, in
practice, is understood as having two semantics: one simula-
tion semantics and one synthesis semantics. The most recent
(System)Verilog standard [4] provides a simulation seman-
tics for Verilog (called scheduling semantics in the standard).
However, the standard, unfortunately, does not provide any
synthesis semantics: That is, it does not define which lan-
guage constructs are synthesizable (a “synthesizable subset”
of the language) and how these synthesizable constructs
should be synthesized. Effectively, this leaves it up to each
Verilog compiler to provide its own synthesis semantics.

Before Verilog was merged into SystemVerilog, the (now
superseded) Verilog standard [1]3 had an accompanying syn-
thesis standard [2]. This synthesis standard could be used as
a starting point for a formal synthesis semantics. However,
recall the context set up in the introduction of this paper: We
are interested in building a compiler that allows us to trans-
port theorems from the Verilog level down to the netlist level.
In this context, the problem is not finding a starting point for
the formalization of a synthesis semantics: Rather, we want a
single semantics used everywhere, because having theorems
expressed in a simulation semantics and a compiler proved
semantics preserving with respect to a (separate) synthesis
semantics opens up problems with composing said theorems
with the compiler correctness theorem. Similar composition
problems occur in informal settings. Indeed, Mills and Cum-
mings [26] outline some “RTL coding styles” (anti-patterns)
that yield simulation and synthesis mismatches.

3Verilog 2005 [3] was published between Verilog 2001 and the merge of Ver-
ilog into SystemVerilog, but Verilog 2005 is a minor update of Verilog 2001.

Lutsig: A Verified Verilog Compiler for Verified Circuit Development CPP ’21, January 18–19, 2021, Virtual, Denmark

To avoid mismatch problems and ensure simple compos-
ability of circuit correctness theorems with the compiler
correctness theorem, Lutsig takes Verilog’s simulation se-
mantics as its synthesis semantics, except for X values, as
described below. Consequently, the top-level correctness
theorem for Lutsig (Sec. 6.2) is stated in terms of Lutsig’s
formalization of Verilog’s simulation semantics.

4.1.2 X Values. We make one important deviation from
Verilog’s simulation semantics in Lutsig’s Verilog semantics.
The deviation concerns Verilog’s (in)famous X values [25, 33,
36]. The simulation semantics for X values provided by the
standard is not a good fit for synthesis purposes; this section
motivates our deviation from the standard and provides our
alternative X semantics. Lutsig’s determinization pass, pre-
sented in Sec. 5.4, illustrates one example of an optimization
enabled by having an X value semantics fit for synthesis.

For background: In Verilog, a bit can take on four different
values: 0, 1, X and Z. The value Z is only relevant for con-
structs not supported by Lutsig (such as nets with multiple
drivers), so we do not consider it here. The values 0 and 1
are the two standard bit values. Remains to be explained,
then, is X. In the Verilog standard [4, p. 83] the value is said
to “represents an unknown logic value.” We now enumerate
some aspects of the standard’s X value semantics and then
conclude that (some of) these aspects stand in the way for the
“don’t care” usage of X values commonly seen in synthesis.

One concern related to X values is how the standard logical
operators should be extended to handle X inputs (in other
words, how to handle “X propagation”). Some operators are
extended in an intuitive way by the standard: For example,
for logical and && [4, pp. 265–266] we have that both 1’b0
&& 1’bx and 1’bx && 1’b0 evaluate to 1’b0, and e.g. 1’b1
&& 1’bx and 1’bx && 1’bx both evaluate to 1’bx. Bitwise
and & [4, p. 266] is extended similarly, and we have that e.g.
3’b00x & 3’b100 evaluate to 3’b000. Also the conditional
operator is given an intuitive extension, e.g. 1’bx ? 4’b01xx
: 4’b00x1 evaluates to 4’b0xxx.
Some other operators, however, are extended in less in-

tuitive ways. For example, addition is one example of an
operator that can be considered too “X-pessimistic” (a term
used in discussions on X value semantics): “[I]f any operand
bit value is the unknown value x [. . .], then the entire result
value shall be x” [4, p. 261]. So, e.g., 3’b000 + 3’b00x eval-
uates to 3’bxxx. Similarly, for a variable a, e.g. a * 0 does
not necessarily evaluate to 0, nor does a - a.
At the same time, other constructs in the language are

seemingly too “X-optimistic”. One example of such a con-
struct is if-statements. For example, after executing the fol-
lowing code fragment the (1-bit) variable awill always be 1’b0:
if (1'bx)
a = 1'b1;
else
a = 1'b0;

This is because the first branch is taken if and only if the con-
dition expression evaluates to “a nonzero known value” [4,
p. 299]. Another too X-optimistic construct is array assign-
ments: An assignment to an array a such as e.g. a[3’bxxx]
= 1’b0 “shall perform no operation” according to the stan-
dard, because an index containing Xs is considered invalid [4,
pp. 148–149].
Another peculiarity with Verilog’s X semantics is illus-

trated by the equality operators provided in the language.
The operators do not keep track of when an X value is com-
pared with itself: None of Verilog’s equality operators pro-
vides the intuitive semantics that comparing 1’bxwith 1’bx
is 1’bx, but comparing, say, a 1-bit variable, a with itself is
always 1’b1. Indeed, let a = 1’bx and consider the following
table [4, pp. 264–265]:

op 1’bx op 1’bx a op a 1’b1 op 1’bx
== 1’bx 1’bx 1’bx
=== 1’b1 1’b1 1’b0
==? 1’b1 1’b1 1’b1

The above semantics is not fit for synthesis purposes, since
one important usage of X values in synthesis is to signal
“don’t care”. For example, if we assign X to a variable, we
signal to the compiler that we do not care about the value
of the variable in the situation it was assigned and the com-
piler is free to assign any value to the variable. This opens
up optimization opportunities for the compiler. However,
clearly, this way of using X values is not compatible with the
simulation semantics outlined above. For example, recall the
if-statement above with the condition 1’bx. If we replace
the condition 1’bx with 1’b1, then a will always be equal to
1’b1 after the if-statement. That is, replacing X values with
concrete values can add behavior to programs!
To solve this problem, and to get an easy-to-understand

semantics, Lutsig’s Verilog semantics deviates from the stan-
dard. In Lutsig’s semantics, bits can only take on the two
standard values 0 and 1. This means that no special attention
needs to be given to how X values propagate through the op-
erators supported by Lutsig. X assignments are given mean-
ing by interpreting them as sources of non-determinism:
Formally, bits from fbits are used to overwrite the old left-
hand side. Other sources of X values are handled by aborting
the execution: For example array out-of-bounds accesses
abort the execution instead of returning X [4, pp. 148–149,
p. 279].4

4.2 Target Language: Netlists
The syntax of Lutsig’s target netlist language is described
in Fig. 3. Cells are connected together with members of the
cell_input type, called i in Fig. 3. A “variable” in the context of

4We leave it up to future case studies to decide if this is a good design
decision or not. In retrospect, we could have followed the standard more
closely here while at the same time avoiding the problems outlined in this
section by returning non-deterministic bits from out-of-bounds accesses.

CPP ’21, January 18–19, 2021, Virtual, Denmark Andreas Lööw

c ::= b | [b] for Boolean b
t ::= logic | logic[n] for n ∈ N
i ::= c literal constant

| v variable
| v[c] array indexing

cell ::= v = ndet(t),v = not(i),v = and(i0, i1),
v = or(i0, i1),v = equal(i0, i1),v = add(i0, i1),
v = mux(i0, i1, i2),v = array_write(i0,n, i1),
v = k-LUT([i]), (v0,v1) = carry4(i0, [i], [i])

d ::= t v = (c, i?)
| t v = (X, i?)

cir ::= circuit [(v, t)] [d] [cell]

Figure 3. Netlist values c , types t , inputs i , cells cell , register
declarations d , and circuits cir .

cell inputs refers to the output of another cell, a register, or a
circuit input. The syntax is animated by a functional big-step
operational semantics that runs a provided circuit for n clock
cycles: circuit_run fext fbits (Circuit exttys regs nl) n . Exe-
cution starts by initializing the registers regs , and for each
clock cycle all cellsnl are executed in order and registers with
inputs are updated after all cells have been executed. The
formal semantics is a straightforward implementation of this
evaluation scheme. For example, executing all cells in order
is done by folding (in the summonad) with the cell semantics
function cell_run. For cell_run in turn, e.g. the semantics of
and cells with Booleans inputs is particularly simple:

cell_run fext s (Cell2 CAnd out in1 in2)
def
= do

in1 ← cell_input_run fext s in1;
in2 ← cell_input_run fext s in2;
in1 ← get_cbool in1;
in2 ← get_cbool in2;
Inr (cset_var s (NetVar out) (CBool (in1 ∧ in2)))

od

The exact set of cells available for use in technologymapped
netlists depends on which hardware technology is targeted.
For this paper, we target Xilinx 7 series FPGAs [39]. Lutsig’s
technology mapped output netlists for this class of FPGAs
contain only k-LUT (with k ≤ 6) and carry4 cells (and reg-
isters) – the other cells in the netlist language are only used
for intermediate compilation steps (and are consequently
not part of the TCB).

We now describe the cells included in the netlist language.
k-LUT cells are k-bit input 1-bit output lookup tables that can
be configured to implement any Boolean function with the
same number of input and output bits. The (maximum) value
of k depends on specific FPGA targeted. carry4 cells repre-
sents the carry chain logic available in the kind of FPGAs
we target [40]5. Lutsig utilizes carry4 cells to implement

5In our formalization, we have merged the two inputs CYINIT and CI into
one input.

addition and wide equality checks (see Sec. 6). The semantics
of ndet(t) is that the cell non-deterministically (using fbits)
generates a value of type t . The semantics of mux(i0, i1, i2)
is that the cell outputs i1 when i0 is true, otherwise i2. The
semantics of array_write(i0,n, i1) is that the cell outputs
the array input i0 with element n replaced by the value of
input i1. The remaining cells have the obvious semantics.

5 Verilog to Netlist Compilation
In this section we describe, in order, the different compilation
passes an input Verilog program goes through when Lutsig
transforms it into a not-yet-technology-mapped netlist. Tech-
nology mapping is explained in the next section.

We have composed the correctness theorems for the differ-
ent passes together with the verified part of the technology
mapper into a top-level correctness theorem for Lutsig, and
the theorem is presented in the next section (in Sec. 6.2).

5.1 Type Checking and Type Annotating
Compilation starts with a type checking and type annota-
tion pass. The type annotations are needed in subsequent
pre-processing passes (Sec. 5.2), and the main Verilog to
netlist pass (Sec. 5.3) needs to know that the input Verilog
program is well-typed. The type checker typecheck takes an
input Verilog program, type checks and type annotates the
program, and returns the annotated program on success, and
otherwise signals a type error.

The type checker is sound in the following sense:

⊢ typecheck (Module exttys decls ps) =
Inr (Module exttys ′ decls ′ ps ′) ⇒
exttys ′ = exttys ∧ decls ′ = decls ∧
vertype_prog (K None) (Module exttys ′ decls ′ ps ′) ∧
run fext fbits (Module exttys ′ decls ′ ps ′) n =
run fext fbits (Module exttys decls ps) n

That is, if the type checker terminates successfully, then
exttys and decls are unchanged, the annotated program
is well-typed and correctly annotated (vertype_prog) in an
empty typing environment (K None), and furthermore the
annotated program behaves in the same way as the input
program.

5.2 Pre-processing
Before themain Verilog to netlist pass (Sec. 5.3), non-constant
index array lookups and case-statements are compiled away
by a series of Verilog to Verilog pre-processing passes. We
now outline these pre-processing passes.

Array lookups. The pre-processing passes for handling
array reads and arraywriteswith non-constant index lookups
both compile away such lookups by replacing them with
case-statements built out of constant lookups only. Given
how similar the two passes are, we only cover the array reads
pre-processing pass in this paper.

Lutsig: A Verified Verilog Compiler for Verified Circuit Development CPP ’21, January 18–19, 2021, Virtual, Denmark

For an array a, e.g. a[1] is considered a lookup with a
constant index, whereas a[i + 1] where i is a variable
is considered a lookup with a non-constant index. All read
lookups with non-constant indices are pre-processed away
by the pass. As an example, say an array a has (Verilog) type
logic[na], another array i has type logic[ni], and two
variables b and c have type logic, then the pre-processing
pass would transform the following code fragment
b = a[i] & c;

into the following code fragment
case (i)
0: tmpvar34 = a[0];
1: tmpvar34 = a[1];
2: tmpvar34 = a[2];
3: tmpvar34 = a[3];
...
n: tmpvar34 = a[n];
endcase

b = tmpvar34 & c;

where tmpvar34 is a fresh variable and n = min(na , 2
ni). The

index lengthni is retrieved from the annotation in the Verilog
AST added by the type checker. When the index is, like in
the example, simply a variable, ni can easily be recomputed
by looking up the variable in the typing environment, but
for more involved expressions, like e.g. i + 1, (re-doing part
of) type inference would be needed if the type checker did
not add annotations. Lastly, note that all remaining array
read lookups are in-bounds after the pre-processing pass
(which simplifies compilation to netlists further down in the
compilation chain).

Case-statements. Case-statements, both those introduced
by the array lookup pre-processing passes and those from the
input program, are transformed into series of if-statements
by a case-statements pre-processing pass. We illustrate the
compilation scheme involved by the following example
case (i + 1)
8'b0000_0000: j = 0;
8'b0000_0001: j = 5;
default: j = 12;
endcase

which would be transformed into
tmpvar66 = i + 1;

if (tmpvar66 == 8'b0000_0000)
j = 0;
else if (tmpvar66 == 8'b0000_0001)
j = 5;
else
j = 12;

where tmpvar66 is a fresh variable.
The pass simplifies subsequent passes, because they do not

have to take case-statements into consideration. But, clearly,
the compilation scheme is highly inefficient: We do not need

two 8-bit wide equality checks to differentiate 8’b0000_-
0000 from 8’b0000_0001.

5.3 Verilog to Netlist Compilation
The Verilog to netlist pass in Lutsig is based on the unverified
Verilog compiler CSYN’s compilation algorithm [14]. We
now outline some interesting aspects of the compilation
algorithm as implemented in Lutsig.

Compiling expressions. The two most important com-
pilation functions are compile_stmt and compile_exp, which
compiles Verilog statements and Verilog expressions. We
explain compile_exp first. Grossly simplified, (part of) the
correctness theorem for compile_exp is:

⊢ compile_exp s e = Inr (s ′,nl ,inp) ∧
erun vfext venv e = Inr vv ∧ . . . ⇒
∃nenv ′ nv .

sum_foldM (cell_run nfext) nenv nl = Inr nenv ′ ∧
cell_input_run nfext nenv ′ inp = Inr nv ∧
same_value vv nv

That is, the theorem states that after executing the generated
netlist nl , the cell input inp has the same value as the input
expression e evaluates to.

The pass targets a set of high-level cells, and consequently
most compilation schemes for expressions are straightfor-
ward. For example, compiling an addition expression is sim-
ply a matter of recursively invoking the expression compiler
twice and merging the results from the two resulting netlists
with a new addition cell CAdd:

compile_exp s (Arith e1 Plus e2)
def
= do

(s ,nl1,inp1) ← compile_exp s e1;
(s ,nl2,inp2) ← compile_exp s e2;
(s ,tmpvar) = fresh_tmpvar s;
newcell = Cell2 CAdd tmpvar inp1 inp2;
newvar = NetVar tmpvar ;
Inr (s ,nl1 ++ nl2 ++ [newcell],VarInp newvar None))

od

Mapping the CAdd cell to cells actually available on FPGAs
is the responsibility of technology mapping (Sec. 6).

Compiling non-X assignments. We now explain some
interesting parts of compile_stmt, and we start with the com-
pilation of non-X assignments. We first remark that each
variable in the input Verilog program is mapped to a register.
A separate post-processing pass not detailed in this paper
removes registers never read, to avoid unnecessary registers.
For each register, the compilation algorithm needs to gen-
erate a net for its next-state function induced by the input
Verilog program. This is done by two stacks of maps σb and
σnb, which the compilation algorithm carries around as state.
The stack structure mirrors the block structure of the input
program and is explained later in this paper when the compi-
lation of if-statements is explained. The maps in each stack

CPP ’21, January 18–19, 2021, Virtual, Denmark Andreas Lööw

map variable names (string) to cell inputs (cell_input option).
A stack forms a map by delegating lookups to the maps in
the stack and letting maps on top shadow maps below. If a
variable is mapped by no map, the stack maps the variable to
the register allocated for it. During compilation, the stacks
of maps are updated as described below.

Blocking assignments update σb and non-blocking assign-
ments update σnb. For a blocking assignment without index-
ing, the following compilation scheme, where the cset_net
call updates σb(var) to inp, compiles the assignment:

compile_stmt s (BAssn (NoIndexing var) (Some e))
def
= do

(s ,nl ,inp) ← compile_exp s e;
Inr (s with bsi := cset_net s .bsi var inp ,nl)

od

For blocking assignments with indexing, the compilation
scheme is similar except that we also need to generate an
array_write cell. Generating the array_write cell is sim-
ple because after the pre-processing passes (Sec. 5.2) have
been run all array indices are in-bound constants.
The compilation schemes for non-blocking assignments

are identical, except that σnb is updated instead of σb.
Compiling variable reads boils down to a lookup in σb, i.e.,

the contents of σnb does not matter for reads:

compile_exp s (Var var)
def
= Inr (s ,[],cget_net s .bsi var)

The contents of σnb become relevant at the end of compi-
lation, similarly to how the contents of ∆ becomes relevant
at the end of each clock cycle in Lutsig’s Verilog semantics.
Informally, σb tracks Γ and σnb tracks ∆, and as the contents
of ∆ overrides the contents of Γ at the end of each clock
cycle, an initially reasonable-looking compilation approach
is to let σnb override σb in the cell input generation for each
variable’s register in the sense that σnb decides the cell input
if it contains an entry for the variable, otherwise σb is used
as a fallback. This idea works for simple programs such as
module // ...
always_ff @(posedge clk) begin
a <= 0; a = 1;
b = 1; b <= 0;
end
endmodule

where according to Verilog’s simulation semantics both a
and b should be 0 at the end of each clock cycle (as non-
blocking assignments always shadow blocking ones). Before
we can present an example program that is miscompiled by
the suggested compilation scheme, we must explain how
if-statements are compiled.

Compiling if-statements. If-statements if (c) then
st else sf are compiled into muxes in the following way:
The expression c is compiled by compile_exp such that we get
a cell input inpc and a netlist nlc for the expression, and st
and sf are compiled by recursively calling compile_stmt in

accordance with the following pseudo-code (ignoring other
state components beyond σb and σnb, and denoting maps in
the two stacks by sigmas as well):

compile_stmt (σϵ :: σb,σϵ :: σnb) st =
(σ st

b :: σb,σ
st
nb :: σnb,nlst),

compile_stmt (σϵ :: σb,σϵ :: σnb) sf =
(σ sf

b :: σb,σ
sf
nb :: σnb,nlsf)

where σϵ is an empty map. To update σb, for each variable
var in either σ st

b or σ sf
b , create a new cell

mux(inpc, (σ
st
b :: σb)(var), (σ

sf
b :: σb)(var))

and add a mapping to σb from var to the new mux. Lastly,
generate muxes for and update σnb in the same way except
use σ st

nb and σ sf
nb instead of σ st

b and σ sf
b .

One interesting aspect of this compilation scheme is that it
causes the generated netlists for both branches to always be
executed, including netlists for dead branches. This is differ-
ent from when targeting a language with jumps, such as e.g.
an assembly language. As an example, for an if-statement
if (c) then st else sf, consider some condition c
that is always true and a statement sf that always crashes
with a runtime error. That sf always crashes does not af-
fect the if-statement’s behavior, because the code will never
be executed. However, as the generated netlist for the if-
statement will consist of nlc followed by nlst followed by
nlsf followed by themuxes used tomerge the results from the
two branches, the netlist for sf executes every clock cycle.
Consequently, it must be ensured that no Verilog code, not
even dead code, can generate a netlist that crashes with a run-
time error. To ensure that no bad netlists are generated, the
pass assumes its input to be well-typed. Fromwell-typedness
and array lookup pre-processing, it follows that no output
netlist will crash with a runtime error.

Compiling non-Xassignments, continued. Nowunder-
standing the compilation scheme for if-statements, we under-
stand why the following program would be miscompiled by
the earlier suggested compilation scheme for non-X assign-
ments saying that σnb should simply shadow σb in register
input generation:
module // ...
always_ff @(posedge clk) begin
if (a)
b <= 0;
b = 1;
end
endmodule

If we would let σnb shadow σb, then starting from a = b = 0
wewould get b = 1 from the Verilog program, but b = 0 from
the generated netlist, because the cell mux(a, 0, b) (where a
and b refer to the registers for a and b) generated from the if-
statement would overshadow the blocking assignment (since
σnb(b) will map to the mentioned mux and σb(b) will map to
1 after the always_ff block has been processed).

Lutsig: A Verified Verilog Compiler for Verified Circuit Development CPP ’21, January 18–19, 2021, Virtual, Denmark

Instead of designing a more complex compilation scheme,
we have restricted Lutsig to only accept modules not con-
taining blocking and non-blocking assignments to the same
variable.6 As a result, σnb never shadows anything in σb,
and, it turns out, the earlier suggested compilation scheme
for register inputs now works without problems. The same
restriction can be found in other compilers: For example
Vivado Design Suite [41, pp. 233–234] introduces a “usage
restriction” saying not to mix blocking and non-blocking as-
signments (although, Vivado can synthesize programs with
mixed assignments “without error”), and (as of this writing)
the latest Yosys compiler [38] silently miscompiles (some)
programs with mixed assignments.

Compiling X assignments. When compiling a blocking
X assignment, a new ndet cell is generated and σb for the
left-hand side variable is updated to map to the cell out-
put of the new ndet cell. Again, the compilation scheme
for non-blocking assignments is the same except that σnb
is updated instead.

Because the netlists for both branches of (all) if-statements
in the input Verilog program are executed each clock cycle,
we cannot “reuse” the fbits stream of non-deterministic bits
from the Verilog level at the netlist level in Lutsig’s correct-
ness theorem. Consider the following code fragment:
if (c)
a = 1'bx;

For this code fragment, one bit of fbits will be consumed if
c evaluates to true, otherwise no bits will be consumed. At
the netlist level, the generated netlist will always consume
one bit of fbits regardless of what c evaluates to. This means
that we cannot state a correctness theorem guaranteeing
that the output netlist has the exact same behavior as the
input Verilog code if we simply reuse fbits . Instead, as seen
in the top-level correctness theorem in Sec. 6.2, we say that
for every nfbits on the netlist level, there is a vfbits on the
Verilog level such that the behavior of the Verilog code co-
incides with the behavior of the netlist (Inr case) or Verilog
evaluation aborts with an error (Inl case). The resulting theo-
rem may initially seem too weak to be useful, but the circuit
correctness theorems we are interested in transporting from
the Verilog level to the netlist level include the claim that no
runtime errors occur in the Verilog code, and consequently
we will never reach the Inl case in the theorem.

5.4 Netlist Determinization
A determinization pass removes all non-determinism from
the circuit as the target cell set does not include any non-
deterministic cells. In the pass, for the registers, all X initial-
izations are replaced with zero initializations. For the cells,
it would be possible to similarly replace all ndet cells with
6Because of the same restriction, we were able to take a small shortcut
in Lutsig’s Verilog semantics, storing complete arrays in ∆ rather than
parts-to-be-updated, because we know ∆ will never shadow anything in Γ.

zeros. But, in some cases, by carefully picking another value
to replace an ndet cells with, we can optimize away other
cells as well in the determinization process. To illustrate this,
consider the following Verilog code:
if (c) begin
// ...
a = 1'b1;
// ...
end else begin
// ...
a = 1'bx;
// ...
end

The Verilog to netlist pass will (as long as a is not assigned in
any of the branches after the assignments highlighted in the
above example) generate a mux cell to merge the two writes
a = 1’b1 and a = 1’bx. Note that if we replace the 1’bx
value with 1’b1, rather than naively replacing all X values
with zeroes, we can optimize away the mux because it will
now always output the same value.
The mux optimization idea illustrated in the example is

the core idea of the determinization pass, except that the
pass operates on the netlist level rather than on the Verilog
level. To be able to select appropriate replacement values, the
pass traverses the netlist twice: (1) During the first traversal
appropriate replacement values are identified, and (2) during
the second traversal ndet cells and cells that become redun-
dant after replacing the ndet cells with the values from the
first traversal are removed.

(1) Finding replacement values. The first traversal in-
crementally builds up a map σ : cell_input → dfill option
where dfill = TBD ctype | HBD cvalue. We call cell inputs with
a TBD (“to be determined”) entry in σ TBD inputs and cell
inputs with aHBD (“has been determined”) entryHBD inputs.
Before the traversal the map is empty. For all ndet cells

visited, a TBD entry is added to the map to keep track of
which inputs can be replaced with new values. A HBD entry
is added when a cell can be optimized away by setting a
TBD input to a specific value. In our simple implementation,
only mux cells add HBD entries. Specifically, if a mux has
one TBD input and the other input is constant (the condition
input does not matter), the TBD entry for the TBD input
is replaced with a HBD entry with the constant from the
constant input. One can easily imagine other ways to add
HBD entries: For example, addition cells with one TBD input
could add HBD entries filled with zeroes as the addition cell
could then be optimized away (regardless of what the other
input to the cell is).

(2) Replacing ndet cells. The σ built up during the first
traversal is used during the second traversal. During the
second traversal, TBD cell inputs are replaced by constant
zero inputs and HBD cell inputs are replaced by the value
contained in the input’s HBD entry. All ndet cells and mux

CPP ’21, January 18–19, 2021, Virtual, Denmark Andreas Lööw

cells with inputs that are constant and equal (after processing
based on σ) are removed.

Correctness. Consider again Lutsig’s top-level theorem
in Sec. 6.2. After the determinization pass, the circuit is in-
dependent of nfbits because it no longer contains any non-
deterministic constructs – and clearly we can always find
a vfbits because the determinization pass never adds new
behaviors to the circuit.

6 Technology Mapping
Technologymapping in Lutsig is divided into two passes: The
first pass is verified (Sec. 6.1), and the second pass is based
on translation validation (Sec. 6.3). The first pass maps high-
level cells and furthermore functions as a pre-processing
pass for the second pass by splitting all low-level array cells
into Boolean cells. The second pass maps all low-level (now-
Boolean) cells not mapped by the first pass to LUTs. The
second pass is based on translation validation to allow future
developments as we expect running a realistic optimizing
technology mapper in-logic would be too computationally
expensive.

6.1 Verified Technology Mapping
The first pass maps high-level cells such as addition cells to
cells natively available on the target FPGAs and splits – or
“blasts” – low-level cells that operate over arrays to cells that
operate over Booleans. As a result, when the second pass
finalizes the mapping process, it only has to map Booleans
cells. The second pass is based on graph covering, and after
the first pass’ pre-processing we know that we will always be
able to find a covering since ak-input Boolean cell can always
(if needed) be covered by a k-LUT. Because the FPGAs we
target only offer Boolean registers, the first pass also blasts
all array registers into Boolean registers.
We have proved that the first pass is correct in the sense

that the following relation between a non-blasted circuit
state s and a blasted state bs is invariant under running a
non-blasted circuit and its blasted version:

blast_reg_rel s bs
def
=

∀ reg .
case cget_var s (RegVar reg 0) of
Inl e ⇒ T
| Inr (CBool v) ⇒
cget_var bs (RegVar reg 0) = Inr (CBool v)
| Inr (CArray v) ⇒
∀ i . i < length v ⇒

cget_var bs (RegVar reg i) = Inr (CBool (el i v))

Informally, Boolean registers remain untouched and array
registers are blasted into a series of Boolean registers each
containing one bit from the array register they were blasted
out of.

The pass functions as follows. When the pass traverses a
netlist, a blast map σ : cell_input → cell_input list7 is main-
tained to keep track of which cells have been blasted where.
For low-level cells, blasting is straightforward; for example,
blasting a mux cell v = mux(i0, i1, i2) with two array inputs
i1, i2 of length n results in n mux cells

v0 = mux(σ (i0),σ (i1)[0],σ (i2)[0]),
v1 = mux(σ (i0),σ (i1)[1],σ (i2)[1]),
. . . ,
vn−1 = mux(σ (i0),σ (i1)[n − 1],σ (i2)[n − 1])

where v0, . . . ,vn−1 are fresh variables. Note how cell inputs
are updated using σ . In case no mapping for a cell input
exists, the cell input is left untouched. After the mux cell has
been blasted, σ is updated such that σ (v) = [v0, . . . ,vn−1].

Blasting high-level cells requires more attention. For exam-
ple, addition can be implemented purely in terms of LUTs, but
the class of FPGAs we target has special hardware support
for addition which we want to exploit. In our implementa-
tion, we tried to mirror how existing compilers for the class
of FPGAs we target map addition operations: A network of
carry4 cells in combination with xor cells implemented as
LUTs, such that the fast carry chains available on the FPGAs
we target are exploited. Our implementation likewise maps
equal cells to networks of LUTs and carry4 cells.
Another special case is array_write cells. Blasting v =

array_write(i0,n, i1) does not generate any new cells: It
is sufficient to update σ (v) such that σ (v)[i] equals σ (i1) if
i = n and σ (i0)[i] otherwise.

6.2 Lutsig’s Top-Level Correctness Theorem
Composing the correctness theorems for the different passes
of the verified compiler (Sec. 5) and the verified technology
mapper (Sec. 6.1) results in the following top-level theorem
for the verified part of Lutsig:

⊢ let m = Module exttys decls ps in
compile keep m = Inr circuit ∧ writes_ok ps ∧
vertype_fext exttys vfext ∧ same_fext vfext nfext ⇒
∃ cenv vfbits .

circuit_run nfext nfbits circuit n = Inr cenv ∧
case run vfext vfbits m n of
Inl e ⇒ T
| Inr venv ⇒ verilog_netlist_rel keep venv cenv

A few details are worth mentioning: The keep argument
to compile is a list of registers that must not be optimized
away. One example usage is keeping registers that are never
read internally but will later be exposed as circuit outputs.
The predicate writes_ok prohibits blocking and non-blocking
assignments to the same variable (see Sec. 5.3). The predicate
verilog_netlist_rel is similar to the predicate blast_reg_rel from

7The actual type is a little more involved, but for this paper this level of
detail is sufficient.

Lutsig: A Verified Verilog Compiler for Verified Circuit Development CPP ’21, January 18–19, 2021, Virtual, Denmark

Sec. 6.1, but only guarantees correspondence for registers in
keep (as other registers might have been optimized away).

6.3 Translation-Validation-Based Technology
Mapping

The second pass maps cells not mapped by the first pass
to LUTs. The output netlist from the pass is fully mapped,
consisting only of cells natively available on the FPGAs we
target. The pass first (1) finds a mapping, and then, as a
separate step, (2) proves the mapping correct.

(1) Finding a mapping. The first step does not involve
any kind of proof: The responsibility of the first step is to
find, by any means, a mapping to later be validated by the
second step. For this purpose, we have implemented a sim-
ple unverified placeholder technology mapper in SML. The
technology mapper is based on conventional graph covering
techniques [18]. The technology mapper does not carry out
any optimization when finding a covering: The mapper con-
structs coverings and selects a covering to use using a simple
greedy algorithm. For the purpose of this paper, finding any
covering is sufficient: As no proofs are required, if a “good”
covering (for some definition of good) is needed, the prob-
lem of finding a covering can be outsourced to any existing
mapper instead of relying on our placeholder mapper. For
this paper, we opted for implementing a placeholder mapper
because it was simpler than integrating an existing mapper.

(2) Proving the mapping correct. The responsibility of
the second step is to generate a theorem on the form
⊢ . . . ⇒

circuit_run fext fbits (Circuit exttys regs nl1) n =
circuit_run fext fbits (Circuit exttys regs nl2) n

where nl1 is the fully mapped netlist produced by the first
step and nl2 is the partially mapped netlist that was given
as input to the first step. Note that the registers regs are left
untouched. Thus, if we can prove each register’s cell inputs
in the two circuits equivalent, the equivalence of the two
circuits easily follows. Cell output names are preserved by
our technology mapper, making matching outputs between
the two netlists simple. As a result, the second step functions
as follows: For each cell output in nl1, prove the cell output
equal to the cell output with the same name in nl2. With
the help of some in-logic computations needed to sanity-
check nl1 as the netlist was generated outside the logic,
the equivalence of the two circuits easily follows from the
equivalence of the cell outputs.

For already mapped cells, given that their inputs are equal
in the two netlists, the equality of their outputs follows di-
rectly. For cells mapped to LUTs, the equivalence is shown
as follows for each LUT:
(2a) generate a Boolean expression for the LUT and a Boolean

expression for the cells covered by the LUT using
HOL4 automation,

(2b) prove the two expressions equivalent using a SAT
solver,

(2c) conclude using furtherHOL4 automation that the equiv-
alence of the LUT and the cells follows.

Step (2a) works in a fashion similar to the proof-producing
HOL-to-Verilog translation tool from the Verilog develop-
ment tools [23] connected to Lutsig. The following predicate

Eval fext st nl inp b
def
=

∀ st ′. is_initial_state st ∧
sum_foldM (cell_run fext) st nl = Inr st ′ ⇒
cell_input_run fext st ′ inp = Inr (CBool b)

allows the automation to express that after running the
netlist nl starting from state st , reading the cell input inp
will return the Boolean b. When we generate a Boolean
expression for a cell input, we say that we are Boolifying
the input.

We have proved theorems similar to the following theorem
for all cells that can occur at this stage of the compilation:

⊢ all_distinct (flat (map cell_outputs nl)) ∧
mem (Cell2 CAnd out in1 in2) nl ∧
Eval fext st nl in1 in1b ∧ Eval fext st nl in2 in2b ⇒
Eval fext st nl (VarInp (NetVar out) None) (in1b ∧ in2b)

Informally, the theorem says that if no cell shadows any other
cell (all_distinct . . .), there is an and cell with inputs in1 and
in2 in the netlist nl , and the two inputs have been Boolified to
in1b and in2b, respectively, then the Boolification of the and
cell’s output out is in1b ∧ in2b. Using this set of theorems
we have proved, Boolifying a set of cells is simply a matter of
visiting each cell in netlist order and for each cell specializing
the theorem for its cell type.
Step (2b) utilizes the existing SAT infrastructure avail-

able in HOL4 [37]. HOL4’s SAT infrastructure relies on the
presence of an external (unverified) SAT solver, like e.g. Min-
iSat [10], from which the infrastructure can reconstruct a
HOL proof based on the output from the SAT solver. That
is, the SAT solver itself remains outside the TCB. The proof
obligations delegated to the SAT solver consist of proving
the Boolifications from step (2a) of the LUT output and the
corresponding cell output in the partially mapped netlist
equivalent. Because each LUT is processed separately, the
Boolean expressions sent to the SAT solver are kept small.

Step (2c) is straightforward given the theorem proved by
the SAT infrastructure in HOL4 in the previous step.

7 Case Study and Evaluation
We now show an example of how to use Lutsig in verified
circuit development and then compare Lutsig to a mature
unverified commercial compiler.

Example usage. As a case study, we follow Fig. 1 and
show how to prove an implementation of a moving average
filter correct with the help of Lutsig. Both the correctness

CPP ’21, January 18–19, 2021, Virtual, Denmark Andreas Lööw

criteria and the HOL implementation of the circuit (A)8 are
defined in terms of the HOL word library. Using the helper
function

presignal fext n shift
def
=

if n < shift then 0w else (fext (n − shift)).signal,

we say that the output signal from our moving average filter
is correct if it is the following signal:

avg_spec fext n
def
=

if n = 0 then 0w
else if (fext (n − 1)).enabled then
(presignal fext n 1 + presignal fext n 2 +
presignal fext n 3 + presignal fext n 4) // 4w

else (fext (n − 1)).signal

A straightforward but space-inefficient implementation is
given by the HOL circuit avg (A):

avg_step fext s
def
= let

s = s with h3 := s .h2;
s = s with h2 := s .h1;
s = s with h1 := s .h0;
s = s with h0 := fext .signal;
s = s with sum := s .h0 + s .h1 + s .h2 + s .h3;
s = div_by_4 s

in
if fext .enabled then s with avg := s .sum
else s with avg := fext .signal

avg fext s 0
def
= s

avg fext s (Suc n)
def
= avg_step (fext n) (avg fext s n)

As Lutsig does not support division, we implement division
by bit-shifting, and as Lutsig does not support bit-shifting,
we implement bit-shifting using array operations (div_by_4 in
the circuit definition, and for completeness, the definition of
div_by_4 is included in App. A). Proving the implementation
correct is trivial, and gives us the following theorem:

⊢ (avg fext avg_init n).avg = avg_spec fext n (1)
We now derive a Verilog implementation vavg (B) from avg.

The core component of the Verilog development tools [23]
we have connected to Lutsig is a proof-producing translator
from shallowly embedded Verilog-like HOL circuits to deeply
embedded Verilog circuits. The Verilog code derived from
avg_step is included in App. B. For each run of the translator,
the translator produces a theorem stating that the input
HOL circuit and the output Verilog circuit have the same
behavior. Composing the theorem produced by the translator
and the HOL circuit correctness theorem Thm. 1, we can
easily produce a Verilog circuit correctness theorem:
⊢ lift_vfext vfext fext ⇒
∃ s . run vfext vfbits vavg n = Inr s ∧

get_reg s “avg” = Inr (w2ver (avg_spec fext n))
(2)

8The parenthesized letters refer to the stages introduced in Fig. 1.

Now having procured the Verilog implementation vavg (B),
the verified part of Lutsig (Sec. 6.2) can now compile down
vavg to a partly technology mapped netlist navg’ (H). Now,
translation-validation-based technology mapping (Sec. 6.3)
provides us with a fully technology mapped netlist navg (I).
At this point, we have all theorems needed to derive the

final correctness theorem for the netlist navg. Composing
the Verilog circuit correctness theorem Thm. 2, Lutsig’s cor-
rectness theorem (Sec. 6.2), and the theorem produced by
translation-validation-based technology mapping (Sec. 6.3),
we have derived the following correctness theorem for the
netlist implementation of the filter:

⊢ lift_nfext nfext fext ⇒
∃ s . circuit_run nfext nfbits navg n = Inr s ∧

get_reg_blasted s “avg” (w2net (avg_spec fext n))

This is as far down the abstraction hierarchy our current
development takes us inside HOL. To produce an FPGA bit-
stream (K) out of navg that can be loaded onto an FPGA, we
need to consult external tools. For communication with ex-
ternal tools, we have developed a (unverified) pretty-printer
that can print technology mapped netlists to Verilog netlists
(J). The pretty-printed netlists can be simulated and synthe-
sized to FPGA bitstreams by tools such as Vivado Design
Suite, which is the tool we used in this case study. According
to the manual testing we have carried out, the circuit works
according to its specification both during simulation and
when loaded onto an FPGA board.

Evaluation. We now provide a short evaluation of the
compiler. The compiler performs reasonably on the moving
average filter case study. Vivado 2018.2 (with default settings)
compiles the Verilog program derived from avg to 29 LUTs9,
2 carry4 cells, and 32 registers. Lutsig compiles it to 32
LUTs, 6 carry4 cells (two cells for each (8-bit) addition in
the program), and 32 registers.
However, Lutsig stands no chance against mature tools

like Vivado on larger examples. The formally verified high-
level compiler Vericert [15] that compiles from CompCert C
to Verilog bases its Verilog semantics on the same Verilog se-
mantics Lutsig bases its Verilog semantics on and is therefore
a good fit for generating test input for Lutsig – since they
consequently deal with similar subsets of Verilog. However,
as Vericert is verified in Coq rather than HOL4, Vericert can-
not provide us with HOL4 correctness proofs for the Verilog
code it produces. But since we for the moment are only in-
terested in evaluating the performance of Lutsig, we do not
need correctness proofs from the front-end used. Concretely,
we use the following C program to evaluate Lutsig:

9The exact number of LUTs depends on what we mean by a LUT. For
example, for the class of FPGAs we target LUTs have two outputs and
sometimes two small one-bit-output LUTs can be merged into one such
LUT. Taking this into consideration when counting gives us 24 two-bit-
output LUTs rather than 29 one-bit-output LUTs.

Lutsig: A Verified Verilog Compiler for Verified Circuit Development CPP ’21, January 18–19, 2021, Virtual, Denmark

int main() {
int max = 5, acc = 0;

for (int i = 0; i != max; i++)
acc += i;

return acc + 2;
}

Vericert compiles this program to two Verilog processes each
containing an 11-cases case-statement. The full Verilog pro-
gram generated by Vericert is included in App. C. Vivado
compiles the Verilog program to 59 LUTs, 27 carry4 cells,
and 138 registers. Lutsig compiles the program to 1087 LUTs,
92 carry4 cells, and 225 registers. Case-heavy programs are
a particularly bad fit for Lutsig: The large number of cells is
a result of the inefficiency of Lutsig’s pre-processing-based
compilation of case-statements (and the lack of optimiza-
tion passes in Lutsig). For this example program, the verified
part of Lutsig takes around 1 second to execute in logic,
the in-logic validation of the netlist generated by Lutsig’s
unverified technology mapper takes around 8 seconds, and
Lutsig’s SAT-based translation validation pass takes around
50 seconds. If we replace the 32-bit registers generated by
the int variables in the C program with 8-bit registers, then
Vivado compiles the program to 49 LUTs, 2 carry4 cells, and
36 registers and Lutsig compiles the program to 326 LUTs,
30 carry4 cells, and 57 registers. For this smaller program,
all of compilation takes around 10 seconds.

8 Related Work
In the software world, realistic verified compilers such as the
CakeML compiler [35] and the CompCert compiler [22] exist.
In the hardware world, equally mature verified compilers are
nowhere to be found. Previous work on verified hardware
compilers is limited but exists.
The verified hardware compiler implemented in Coq by

Braibant and Chlipala [8] share many similarities with our
work, but their source and target languages are different from
ours. Their source language is a Bluespec-inspired language
called Fe-Si. Fe-Si programs share many similarities with the
subset of Verilog Lutsig supports, but Fe-Si programs are
more high-level as they do not specify cycle-per-cycle be-
havior. Unlike our source language, Fe-Si does not include X
values. The Fe-Si compiler, like Lutsig, target netlists. Neither
the Fe-Si compiler nor Lutsig succeed in moving all of hard-
ware development entirely inside an ITP, but Lutsig comes
one step further towards this goal as the Fe-Si compiler does
not include a technology mapper.

Bourgeat et al. [7] provide another verified hardware com-
piler implemented in Coq for another Bluespec-inspired lan-
guage called Kôika. With Kôika, Bourgeat et al. try to address
one of the drawbacks of working on a higher abstraction
level than traditional HDLs like Verilog allow. Specifically,
Kôika allows the hardware designer to specify a schedule that

can be used to verify that the Kôika compiler builds the kind
of hardware the designer had in mind when implementing
their design in Kôika. Mismatch problems between designer
intent and what is constructed by the hardware compiler can
happen in Verilog as well, one (infamous) example being the
unintended inferred latches problem. Whether one should
design and verify hardware on a high or low abstraction level
depends on the context the work is carried out in, and there
are pros and cons to both alternatives. A good high-level lan-
guage brings advantages, e.g. by enabling rapid prototyping,
but also, as illustrated by Kôika, disadvantages in terms of
compiler understandability – the more abstract the language,
the more magical the black boxes known as the compilers
associated with the language become for language users.
Another previous project is the partly verified BEDROC

high-level synthesis system [21]. Designed with verification
in mind, the aim of the project was full verification, but the
work was never finished. A small part of the system was
verified inside an ITP (Nuprl), the rest of the verification was
carried out by non-ITP means.

Beyond the above mentioned projects, efforts for applying
ITPs to hardware development seem to have been focused on
topics outside compiler verification: In particular inventing
and embedding hardware DSLs and verifying circuits have
received more attention [9, 13, 17, 24, 29].

9 Conclusion
We have presented a new verified compiler called Lutsig
that compiles Verilog programs down to technology mapped
netlists for FPGAs. We have also illustrated the utility of the
compiler as a tool in small TCB hardware development by
transporting properties proved at the compiler’s source level
down to the compiler’s target level.

Our case studies tell us that further work is needed on im-
proving compiler output quality (e.g. in terms of number of
LUTs). Moreover, the subset of Verilog Lutsig currently sup-
ports is arguably too closely tied to the kind of Verilog code
produced by the proof-producing Verilog translator used in
our main case study. For Lutsig to be more widely applicable,
a larger subset of Verilog must be supported. Adding support
for constructs commonly seen in production Verilog code not
currently supported by Lustig, such as always_comb blocks
and continuous assignments, is therefore part of future work.
Another important missing feature is support for Verilog
designs consisting of multiple modules. Our plan is to add
support for important missing features incrementally now
that all initial components of Lutsig are in place.

Acknowledgments
This research was supported with funding from the Swedish
Foundation for Strategic Research.We thankMagnusMyreen
for comments on drafts of this paper.

CPP ’21, January 18–19, 2021, Virtual, Denmark Andreas Lööw

A Definition of div_by_4

div_by_4 s
def
= let

s = s with sum := (0 :+ word_bit 2 s .sum) s .sum;
s = s with sum := (1 :+ word_bit 3 s .sum) s .sum;
s = s with sum := (2 :+ word_bit 4 s .sum) s .sum;
s = s with sum := (3 :+ word_bit 5 s .sum) s .sum;
s = s with sum := (4 :+ word_bit 6 s .sum) s .sum;
s = s with sum := (5 :+ word_bit 7 s .sum) s .sum;
s = s with sum := (6 :+ F) s .sum;
s = s with sum := (7 :+ F) s .sum

in s

That div_by_4 is a correct implementation of division can be
proved with almost no effort:

⊢ div_by_4 s = s with sum := s .sum // 4w

B Verilog Process Derived from avg
always_ff @(posedge clk) begin
h3 = h2;
h2 = h1;
h1 = h0;
h0 = signal;
sum = h0 + h1 + h2 + h3;
sum[0] = sum[2];
sum[1] = sum[3];
sum[2] = sum[4];
sum[3] = sum[5];
sum[4] = sum[6];
sum[5] = sum[7];
sum[6] = 0;
sum[7] = 0;

if (enabled)
avg = sum;
else
avg = signal;

end

C Vericert Output
The small C example program in Sec. 7 and the output in this
section is taken from Yann Herklotz’s talk at the PLDI’20
student research competition. We had to slightly modify the
C program, as we had to replace the loop exit condition i <
maxwith i != max because Lutsig does not support less-than
comparisons. Below follows the Verilog code Vericert gives
as output when given the C example program as input. We
had to slightly modify the output such that it would fit the
subset of Verilog Lutsig supports.
module main(reg_7, reg_8, clk, finish, ret);
input [0:0] reg_7;
input [0:0] reg_8;
input [0:0] clk;
output reg [0:0] finish;
output reg [31:0] ret;

reg [31:0] state;
reg [31:0] reg_1;
reg [31:0] reg_2;
reg [31:0] reg_3;
reg [31:0] reg_4;

always @(posedge clk)
if (reg_8 == 1'd1)
state <= 4'd11;
else
case (state)
4'd8: state <= 3'd7;
3'd4: state <= 3'd7;
2'd2: state <= 1'd1;
4'd10: state <= 4'd9;
3'd6: state <= 3'd5;
1'd1: state <= 1'd1;
4'd9: state <= 4'd8;
3'd5: state <= 3'd4;
2'd3: state <= 1'd1;
4'd11: state <= 4'd10;
3'd7:
if (reg_1 == reg_3)
state <= 2'd3;
else
state <= 3'd6;

default: ;
endcase

always @(posedge clk)
case (state)
4'd8: ;
3'd4: ;
2'd2: reg_4 <= 32'd0;
4'd10: reg_2 <= 32'd0;
3'd6: reg_2 <= reg_2 + (reg_1 + 32'd0);
1'd1: begin
finish <= 1'd1;
ret <= reg_4;
end
4'd9: reg_1 <= 32'd0;
3'd5: reg_1 <= reg_1 + 32'd1;
2'd3: reg_4 <= reg_2 + 32'd2;
4'd11: reg_3 <= 32'd5;
3'd7: ;
default: ;
endcase

endmodule

References
[1] 2001. IEEE Standard for Verilog Hardware Description Language. IEEE

Std 1364-2001 (2001). https://doi.org/10.1109/IEEESTD.2001.93352
[2] 2005. Verilog Register Transfer Level Synthesis. IEEE Std 62142-2005

(2005). https://doi.org/10.1109/IEEESTD.2005.339572
[3] 2006. IEEE Standard for Verilog Hardware Description Language. IEEE

Std 1364-2005 (2006). https://doi.org/10.1109/IEEESTD.2006.99495
[4] 2018. IEEE Standard for SystemVerilog–Unified Hardware Design,

Specification, and Verification Language. IEEE Std 1800-2017 (2018).
https://doi.org/10.1109/IEEESTD.2018.8299595

https://doi.org/10.1109/IEEESTD.2001.93352
https://doi.org/10.1109/IEEESTD.2005.339572
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2018.8299595

Lutsig: A Verified Verilog Compiler for Verified Circuit Development CPP ’21, January 18–19, 2021, Virtual, Denmark

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
2012. Chisel: Constructing Hardware in a Scala Embedded Language.
In Annual Design Automation Conference (DAC). https://doi.org/10.
1145/2228360.2228584

[6] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998.
Lava: Hardware Design in Haskell. In International Conference on
Functional Programming (ICFP). https://doi.org/10.1145/289423.289440

[7] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind.
2020. The Essence of Bluespec: A Core Language for Rule-Based
Hardware Design. In Conference on Programming Language Design
and Implementation (PLDI). https://doi.org/10.1145/3385412.3385965

[8] Thomas Braibant and Adam Chlipala. 2013. Formal Verification of
Hardware Synthesis. In Computer Aided Verification (CAV). https:
//doi.org/10.1007/978-3-642-39799-8_14

[9] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,
Adam Chlipala, and Arvind. 2017. Kami: A Platform for High-
Level Parametric Hardware Specification and Its Modular Verification.
Proceedings of the ACM on Programming Languages 1, ICFP (2017).
https://doi.org/10.1145/3110268

[10] Niklas Eén and Niklas Sörensson. 2004. An Extensible SAT-solver. In
Theory and Applications of Satisfiability Testing. https://doi.org/10.
1007/978-3-540-24605-3_37

[11] Peter Flake, Phil Moorby, Steve Golson, Arturo Salz, and Simon David-
mann. 2020. Verilog HDL and Its Ancestors and Descendants. Pro-
ceedings of the ACM on Programming Languages 4, HOPL (2020).
https://doi.org/10.1145/3386337

[12] Peter Gammie. 2013. Synchronous Digital Circuits as Functional Pro-
grams. ACM Computing Surveys 46, 2 (2013). https://doi.org/10.1145/
2543581.2543588

[13] Michael J. C. Gordon. 1986. Why higher-order logic is a good formalism
for specifying and verifying hardware. In Formal Aspects of VLSI Design:
Proceedings of the 1985 Edinburgh Workshop on VLSI.

[14] David J. Greaves. 1995. The CSYNVerilog Compiler and Other Tools. In
International Workshop on Field-Programmable Logic and Applications
(FPL). https://doi.org/10.1007/3-540-60294-1_113

[15] Yann Herklotz, James Pollard, Nadesh Ramanathan, and John Wick-
erson. 2020. Formal Verification of High-Level Synthesis. https:
//yannherklotz.com/docs/drafts/formal_hls.pdf Under review.

[16] Yann Herklotz and John Wickerson. 2020. Finding and Understanding
Bugs in FPGA Synthesis Tools. In International Symposium on Field-
Programmable Gate Arrays (FPGA). https://doi.org/10.1145/3373087.
3375310

[17] Warren A. Hunt, Matt Kaufmann, J Strother Moore, and Anna Slo-
bodova. 2017. Industrial hardware and software verification with
ACL2. Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 375, 2104 (2017).
https://doi.org/10.1098/rsta.2015.0399

[18] Mike Hutton, Vaughn Betz, and Jason Anderson. 2016. FPGA Synthesis
and Physical Design. In Electronic Design Automation for IC Imple-
mentation, Circuit Design, and Process Technology, Luciano Lavagno,
Igor L. Markov, Grant Martin, and Louis K. Scheffer (Eds.). CRC Press,
Chapter 16.

[19] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang,
Albert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim
Lawson, and Jonathan Bachrach. 2017. Reusability is FIRRTL ground:
Hardware construction languages, compiler frameworks, and trans-
formations. In International Conference on Computer-Aided Design
(ICCAD). https://doi.org/10.1109/ICCAD.2017.8203780

[20] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O. Myreen.
2018. Software Verification with ITPs Should Use Binary Code Ex-
traction to Reduce the TCB. In Interactive Theorem Proving (ITP).
https://doi.org/10.1007/978-3-319-94821-8_21

[21] Miriam Leeser, Richard Chapman, Mark Aagaard, Mark Linderman,
and Stephan Meier. 1993. High Level Synthesis and Generating FPGAs
with the BEDROC System. Journal of VLSI Signal Processing Systems
for Signal, Image and Video Technology 6, 2 (1993). https://doi.org/10.
1007/bf01607881

[22] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
munications of the ACM (CACM) 52, 7 (2009). https://doi.org/10.1145/
1538788.1538814

[23] Andreas Lööw and Magnus O. Myreen. 2019. A Proof-Producing
Translator for Verilog Development in HOL. In International Workshop
on Formal Methods in Software Engineering (FormaliSE). https://doi.
org/10.1109/FormaliSE.2019.00020

[24] Thomas F. Melham. 1993. Higher Order Logic and Hardware Verification.
Cambridge University Press.

[25] Don Mills. 2004. Being Assertive with Your X. In Synopsys Users Group
Conference (SNUG).

[26] Don Mills and Clifford E. Cummings. 1999. RTL Coding Styles That
Yield Simulation and Synthesis Mismatches. In Synopsys Users Group
Conference (SNUG).

[27] Rishiyur Nikhil. 2004. Bluespec SystemVerilog: Efficient, Correct RTL
from High-Level Specifications. In International Conference on Formal
Methods and Models for Co-Design (MEMOCODE). https://doi.org/10.
1109/MEMCOD.2004.1459818

[28] Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam
Tan. 2016. Functional Big-step Semantics. In European Symposium on
Programming (ESOP). https://doi.org/10.1007/978-3-662-49498-1_23

[29] João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. 2018. Π-
Ware: Hardware Description and Verification in Agda. In International
Conference on Types for Proofs and Programs (TYPES 2015). https:
//doi.org/10.4230/LIPIcs.TYPES.2015.9

[30] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation
validation. In International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS). https://doi.org/10.1007/
BFb0054170

[31] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020.
LLHD: A Multi-level Intermediate Representation for Hardware De-
scription Languages. In Conference on Programming Language Design
and Implementation (PLDI). https://doi.org/10.1145/3385412.3386024

[32] Konrad Slind and Michael Norrish. 2008. A Brief Overview of HOL4.
In Theorem Proving in Higher Order Logics (TPHOLs). https://doi.org/
10.1007/978-3-540-71067-7_6

[33] Stuart Sutherland. 2013. I’m Still In Love With My X!. In Design and
Verification Conference (DVCon).

[34] Stuart Sutherland and Don Mills. 2007. Verilog and SystemVerilog
Gotchas: 101 Common Coding Errors and How to Avoid Them. Springer.
https://doi.org/10.1007/978-0-387-71715-9

[35] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox,
Scott Owens, and Michael Norrish. 2019. The verified CakeML com-
piler backend. Journal of Functional Programming (JFP) 29 (2019).
https://doi.org/10.1017/S0956796818000229

[36] Mike Turpin. 2003. The Dangers of Living with an X. In Synopsys Users
Group Conference (SNUG).

[37] Tjark Weber and Hasan Amjad. 2009. Efficiently checking proposi-
tional refutations in HOL theorem provers. Journal of Applied Logic 7,
1 (2009). https://doi.org/10.1016/j.jal.2007.07.003

[38] Clifford Wolf. [n.d.]. Yosys Open SYnthesis Suite. http://www.clifford.
at/yosys.

[39] Xilinx 2018. 7 Series FPGAs Data Sheet: Overview (DS180, v2.6). Xilinx.
[40] Xilinx 2019. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC

Libraries Guide (UG953, v2019.2). Xilinx.
[41] Xilinx 2020. Vivado Design Suite User Guide: Synthesis (UG901, v2019.2).

Xilinx.

https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/289423.289440
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1007/978-3-642-39799-8_14
https://doi.org/10.1007/978-3-642-39799-8_14
https://doi.org/10.1145/3110268
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1145/3386337
https://doi.org/10.1145/2543581.2543588
https://doi.org/10.1145/2543581.2543588
https://doi.org/10.1007/3-540-60294-1_113
https://yannherklotz.com/docs/drafts/formal_hls.pdf
https://yannherklotz.com/docs/drafts/formal_hls.pdf
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1098/rsta.2015.0399
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1007/bf01607881
https://doi.org/10.1007/bf01607881
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-0-387-71715-9
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1016/j.jal.2007.07.003
http://www.clifford.at/yosys
http://www.clifford.at/yosys

	Abstract
	1 Introduction
	2 Why Existing Approaches to Hardware Development Are Insufficient
	3 Compiler Overview
	4 Source Language and Target Language
	4.1 Source Language: Verilog
	4.2 Target Language: Netlists

	5 Verilog to Netlist Compilation
	5.1 Type Checking and Type Annotating
	5.2 Pre-processing
	5.3 Verilog to Netlist Compilation
	5.4 Netlist Determinization

	6 Technology Mapping
	6.1 Verified Technology Mapping
	6.2 Lutsig's Top-Level Correctness Theorem
	6.3 Translation-Validation-Based Technology Mapping

	7 Case Study and Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Definition of div_by_4
	B Verilog Process Derived from avg
	C Vericert Output
	References

